Stability of resonantly interacting heavy-light Fermi mixtures
نویسندگان
چکیده
منابع مشابه
Evidence for superfluidity in a resonantly interacting Fermi gas.
We observe collective oscillations of a trapped, degenerate Fermi gas of 6Li atoms at a magnetic field just above a Feshbach resonance, where the two-body physics does not support a bound state. The gas exhibits a radial breathing mode at a frequency of 2837(05) Hz, in excellent agreement with the frequency of nu(H) identical with sqrt[10nu(x)nu(y)/3]=2830(20) Hz predicted for a hydrodynamic Fe...
متن کاملFrustrated phase separation in the momentum distribution of field-driven light-heavy Fermi-Fermi mixtures of ultracold atoms
Time-of-flight images are a common tool in ultracold atomic experiments, employed to determine the quasimomentum distribution of the interacting particles. If one introduces a constant artificial electric field, then the quasimomentum distribution evolves in time as Bloch oscillations are generated in the system and then are damped, showing a complex series of patterns. In different-mass Fermi-...
متن کاملHeavy-light fermion mixtures at unitarity.
We investigate fermion pairing in the unitary regime for a mass ratio corresponding to a ;{6}Li-;{40}K mixture using quantum Monte Carlo methods. The ground-state energy and the average light- and heavy-particle excitation spectrum for the unpolarized superfluid state are nearly independent of the mass ratio. In the majority light system, the polarized superfluid is close to the energy of a pha...
متن کاملMechanical stability of a strongly interacting Fermi gas of atoms
A strongly attractive, two-component Fermi gas of atoms exhibits universal behavior and should be mechanically stable as a consequence of the quantum-mechanical requirement of unitarity. This requirement limits the maximum attractive force to a value smaller than that of the outward Fermi pressure. To experimentally demonstrate this stability, we use all-optical methods to produce a highly dege...
متن کاملStability and pairing in quasi-one-dimensional Bose-Fermi mixtures.
We consider a mixture of single-component bosonic and fermionic atoms in an array of coupled one-dimensional "tubes." For an attractive Bose-Fermi interaction, we show that the system exhibits phase separation instead of the usual collapse. Moreover, above a critical intertube hopping, all first-order instabilities disappear in both attractive and repulsive mixtures. The possibility of suppress...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review B
سال: 2012
ISSN: 1098-0121,1550-235X
DOI: 10.1103/physrevb.86.174518